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Abstract. We study a general class of growth walks in two dimensions with a self-avoiding 
constraint, which can be considered as ‘dressed’ self-avoiding walks. A walker travels on 
a square lattice and chooses at each step one of the three forward directions with probability 
p , ,  p z  and p, if the directions are allowed. The self-avoiding constraint is obtained by 
‘dressing’ the walk with ‘black’ and ‘white’ particles after each step such that the walk 
generates the external perimeter o f  arbitrary clusters consisting of black or white particles. 
We discuss the critical values of p , ,  p 2  and pp which allow for infinite walks and study the 
end-to-end distance r (  f )  and the corresponding distribution function N (  r, t ) .  Furthermore, 
we introduce a bias field in the growth process and discuss how the time evolution of the 
walk is modified by the bias. 

1. Introduction 

In recent years, considerable attention has been addressed to. kinetic growth models. 
Kinetic growth models have been used to describe a large variety of growth phenomena, 
ranging from the irreversible growth of additive copolymerisation to the growth of 
tumours, epidemics, diffusion fronts and signal propagation [ 1-1 13. In this paper we 
will concentrate on those growth models which can be considered as self-avoiding 
random walks. Self-avoiding walks (SAW) were proposed by Hammersley and Morton 
[2] as a model for linear polymers with excluded volume interactions. Originally, the 
SAW was defined in equilibrium, where the ensemble of chains of fixed number N of 
elements is considered and crossing between the elements of one chain is forbidden. 
On average, the radius R and ‘mass’ N of a chain are related by 

N - R ~ F  
where d, is the fractal dimension of the chain: for the SAW, dF = $ in two dimensions. 
In principle, the SAW can also be considered as a dynamical process, as a normal 
random walk which stops when a site is going to be visited twice. However, in this 
way only short chains can be grown and large chains of N segments are exponentially 
rare. 

In order to allow also for the growth of larger chains with a self-avoiding constraint, 
several other kinetic growth models have been introduced in recent years. In the kinetic 
growth walk (KGW), discussed by Majid et a1 [12], a random walker can only step to 
those sites which have not been visited before. The walk is terminated when the walker 
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is trapped. However, in this walk chains of large N are still rare and  the asymptotic 
behaviour of the walk is difficult to detect; for small N the KGW differs considerably 
from the SAW [4,12, 131 but it turned out [13-151 that both walks nevertheless show 
the same (asymptotic) behaviour for large N with the same fractal dimension d , .  

More recently, random walks with a self-avoiding constraint which allow the growth 
of larger chains have been proposed by several authors. Ziff et a1 [ 161 have introduced 
a kind of two-sided self-avoiding walk. In this walk the external perimeter of percola- 
tion clusters in two-dimensional systems is generated, which by definition is self- 
avoiding. The walk stops only when the perimeter is formed, i.e. when the last added 
segment of the chain is linked with the initial segment. It has been shown by Weinrib 
and  Trugman [17] that this perimeter walk shows the same asymptotic behaviour as 
two other (equivalent) kinetic growth models, the ‘indefinitely growing self-avoiding 
walk’ (IGSAW) [18] and the ‘smart kinetic walk’ (SKW) [17]. In the SKW, for example, 
a walker steps with equal probability to allowed nearest-neighbour sites. Allowed sites 
are those sites which have not been visited before and which are connected via allowed 
sites with infinity, so that the walker cannot be trapped. 

In this paper we introduce and discuss a more general type of growth walk with 
a self-avoiding constraint, which can be considered ‘dressed self-avoiding walks’. A 
walker travels on a two-dimensional lattice with coordination number z and chooses 
the direction of the next step with probability p l ,  p 2 , .  . . , pz-l if the directions are 
allowed (the backwards direction is always forbidden). The self-avoiding constraint 
is obtained by ‘dressing’ the walk with ‘black’ and ‘white’ particles after each step such 
that the walk generates the external perimeter of arbitrary clusters consisting of black 
or  white particles. The perimeter walk model of Ziff er a1 [16] is a particular case of 
this growth model. Furthermore, we introduce a bias field in the growth process and 
discuss how the time evolution of the chain is modified by the field. 

The paper is organised as follows. In § 2 the model is explained. In 0 3 the critical 
behaviour of the walk as a function of the jump probabilities p I ,  p 2 , .  . . ,pz- l  is 
investigated and a scaling theory for the end-to-end distance r( t )  and the corresponding 
distribution function N ( r ,  t )  is performed. In § 4 we study the effect of the bias field 
on the growth process and § 5 concludes the paper with a discussion. 

2. The dressed self-avoiding walk (DSAW) 

For convenience we consider a square lattice and  its dual lattice ( z  = 4). Adjacent 
sites are separated by bonds which form the dual lattice (see figure l ( a ) ) .  The walk 
is performed on the dual lattice and self-avoiding constraint will be obtained by 
‘dressing’ the walk with ‘black’ and ‘white’ particles which are placed on the original 
lattice. 

At time t = 1 we occupy one bond in the dual lattice by an  arrow which defines 
the direction of the walk. This arrow is the seed of our growth process. In order to 
make the growth walk self-avoiding (no crossing and no trapping) we dress the arrow 
by placing two different types of particles on both sides of the arrow on the orginal 
lattice, a ‘white’ particle on the left and a ‘black’ particle on the right (figure l ( a ) ) .  
At time t = 2 one of the three bonds in the forward direction of the arrow (left, straight 
ahead or right) is chosen with probabilities pI , p 2  or p 3 ,  respectively, and  then occupied 
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Figure 1. ( a )  Initial steps of a 'dressed' self-avoiding walk determined by the set of 
generators (L 'AR') .  ( b )  Pattern of a 'dressed' self-avoiding walk grown by the set of 
generators (L 'AR' ) .  In  the next step a left turn and a move straight ahead are forbidden 
(broken arrows), and only a turn to the right is allowed. 

by a second arrow. By definition, pI + p 2 + p ,  = 1. Then the new arrow is dressed by 
adding a black and/or white particle, such that the right side of the arrow is occupied 
by a black particle and the left side is occupied by a white particle (figure l ( a ) ) .  It 
is convenient to combine two successive steps of the walk and to consider them as the 
generators of the growth process (see also [19]). According to the three available 

directions, left, straight ahead, and right, we have the three generators 2-j- , -OF' 
0 .  0 .  

' 0  
and -&$. We shall see below that other choices of the generators are also possible. 

The generators are chosen with probabilities p I ,  p 2  and p 3  and the growth walk is 
created by successively adding generators. The general procedure is as follows. Sup- 
pose we are at time step t and want to proceed to t + 1. First we choose the bond 
where we attempt to place the new arrow. This new arrow and the last added arrow 
define the generator. The growth proceeds in the attempted direction, if the generator 
fits into the existing environment of black and white particles. For example, if adding 
the generator requires us to place a black particle on a site which is already occupied 
by a white particle, then the attempted direction is not allowed, time is not increased, 
and a new trial must be made (see figure l (b) ) .  By this procedure, the self-avoiding 
constraint is always satisfied. The walk terminates when the last added arrow is linked 
together with the initial arrow and a closed loop is formed. 

As indicated above, the generators are in general not uniquely defined. For the 
square lattice, one has the choice between the following generators to create a DSAW. 

For turning left, one can choose L' = 7-- or L"= T--, for moving ahead we have 
I 

.I 0 : .  

0 .  

0 .  as above, and for turning right we can either choose R' = - -&- or 
I 

The walk defined by the set ( L ' ,  A, R ' )  has been discussed above. In this walk, 
black and white particles play a symmetric role. Different bonds can touch each other 
since there is an unoccupied corner in L' and R ' ,  but crossing is impossible. 

When the set (L", A, R")  is chosen, the symmetry between black and white is 
preserved. Now bonds cannot even touch each other and the walk is strictly self- 
avoiding. 
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e o e o o  

o o e e o  
- 

Finally, the sets SI E (L”, A, R’) and S, = (L’, A, R”) of generators create DSAW 

where black and white particles play an asymmetrical role. For the special choice of 
p1 = p 2 ,  p z  = p (  1 - p )  and p ,  = (1 - p ) ,  the set S1 generates the perimeter of site-percola- 
tion clusters made of black particles (with concentration p )  on the square lattice and 
the walk reduces to the perimeter walk of Ziff et a1 [16]. The set S2 is equivalent to 
S, when black and white are permuted. 

In general, the number of possible generators increases with increasing coordination 
number of the dual lattice. In a triangular lattice, for example, there is only one set 
of generators possible. The corresponding dual lattice is the honeycomb lattice ( z  = 3)  
with only two forward directions, left and right. 

Here we consider the square lattice only. As we expect that all walks described 
above belong to the same universality class, we will choose in the following only one 
specific set of generators, S ,  (figure 2). First we will study how the choice of p l ,  p z ,  
p 3  influences the properties of the growth walk. 

I f  

0 0 0 0  

3. Scaling properties of the dressed self-avoiding walk on the square lattice 

0 . 0  

3.1. Critical behaviour 

In the normal perimeter walk on the square lattice, p l ,  p , ,  p ,  are given by p1 = p 2 ,  
p 2  = p (  1 - p )  and p ,  = (1 - p ) ,  where p is the (given) concentration of black particles 
[16]. At the critical value p =p,=0.5928 the black particles start forming an infinite 
cluster [20]. Correspondingly, there exists an infinite cluster perimeter at p c  and an 
infinite perimeter walk can be generated. 

0 0  

0 0 0 0 .  
r c 

In the general DSAW the growth properties depend on pI , p 2  and p ,  with pI + p 2  + p ,  = 
1. The walk is determined by two independent parameters and we therefore expect a 
critical line where an infinite walk can occur. More accurately, at the critical line the 
probability of finding an unclosed walk of length h follows a power law in h, while it 
decreases exponentially otherwise. 

To determine this critical line we consider the distribution of closed loops and 
distinguish between left- and right-turning loops. In right-turning loops, the black 
particles are inside the loop and the walk generates the external perimeter of a finite 
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black cluster. In left-turning loops, the black particles are outside the loop and the 
walk generates one of the internal perimeters of a black cluster. Below criticality, there 
exist more external than internal perimeters, while above criticality we have more 
internal than external perimeters. Only at criticality are the number of external and 
internal perimeters exactly the same [21]. By counting the number nYf  and n r '  of 
right- and left-turning closed loops of h steps (arrows) we can determine the critical 
line. From the scaling relations [20] for ordinary percolation, 

nYf  = h -'hf[ ( p  - p c )  h - h ]  

n ;Int = h -Thf [ ( p c  - p ) h u h ]  
we find that close to the critical point the ratio between nYt and n r t  is given by 

ny' /n; '=  1 +2(p -p,)h"Ifl(O)/f(O) (2) 
where ffh = 1/( 1 + v) and v = is the correlation length exponent. Therefore, for large 
h this ratio is very sensitive to a variation in p near p c ,  which allows a very accurate 
determination of the critical points. For convenience we have taken p 2  and p I / p 3  as 
independent parameters: p 2  is related to the mean length between two turns of the 
walker and therefore defines a basic scale in the problem and p , / p 3  is the ratio between 
left and right turns. The result for the critical line is shown in figure 3. When p 2  = 0, 
i.e. only left and right turns are allowed, then the critical point is given by p 3  = p :  = 0.5928 
and p ,  = 1 - p c .  The proof is sketched in appendix 2. On the other hand, when p 2  
tends to unity, the walker greatly prefers to go straight ahead. In this case, the ratio 
between the critical values of pI and p 3  tends to unity. Theoretical arguments for this 
are also given in appendix 2. 

3.2. The time evolution of the end-to-end distance 

Next we discuss the evolution of the end-to-end distance ( r2(  t))'/' as function of t on 
the critical line. By definition, t is equal to the number h of segments (arrows). A 

9 
Figure 3. Critical line in the space of jump probabilities ( p , , p 2 , p 3 ) .  The critical line 
separates the region above criticality (A), where preferentially internal perimeters of black 
clusters are generated, from the region below criticality (B) where preferentially external 
perimeters of black clusters are generated. T h e  full circles are results from Monte Carlo 
simulation. For one set of parameters, walks up to 3200 time steps have been analysed 
and averages over 100 OOO walks have been made. 
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basic length in the problem is provided by aeff = 1/(1 - p 2 ) ,  which is proportional to 
the mean length f and the mean time T between two turns, f =  1. For small times we 
must have 

( r * ( t ) )  - t 2  t<c i (3a) 

while for large times we expect that the walks belong to the same universality class as 
the normal perimeter walk (see above), i.e. 

( r Z ( t ) ) -  t2 ldn t > >  I ( 3 b )  

where d ,  = i is the fractal dimension of the external perimeter ('hull') in two dimensions. 
Since a,, is the basic length and time in the problem we expect that for large enough 
aeB, (r2)  and t can be expressed in units of a,, , i.e. 

( r 2 (  t))/a,ZR = R2( t /ae , )  (4) 

as Ta a,, and F a  ae,. The scaling function R ( x )  is universal and should not depend 
on the walk parameters. From (3a, 6)  and  (4) we obtain 

R ( x )  - x x<< 1 ( 5 a )  

R ( x )  - x >> 1. ( 5 6 )  

Combining (4) and (56) we can predict that for large t the mean end-to-end distance 
varies as 

(6) 

We have calculated ( r * ( t ) )  for various values of a,, on the critical line. We have scaled 
the result according to equation (4). The data collapse, shown in figure 4, confirms 
the scaling theory, and shows clearly that the asymptotic behaviour of the walk is 
described by the external perimeters of ordinary percolation clusters, as has been 
assumed in (36). 

( r2( t ) ) I / *  - ( a,,) I -11'~ t 

t 
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3.3. The distribution function N ( r ,  1 )  on the critical fine 

Next we study the distribution function N ( r ,  t )  at criticality, which is defined as the 
probability of finding the walker at time t at distance r from the seed. For all critical 
walks with arbitrary value of a,, = 1/( 1 - p 2 )  and for large times we expect the following 
‘superscaling’ behaviour: 

N ( r ,  t )  = ( l / Y ) N s ( t ) N ( r / Y )  (7 )  
where N s ( t )  is the number of surviving walks (which are not closed) at time t and 
f = ( r 2 ( t ,  U,,))”*. From equation (6) we know that Y- a $ ” d H ’ t l ’ d H  for t >> I and 
a,, >> 1. For large f and fixed a,, , Y scales as t ’ / d H  and ( 7 )  takes the scaling form (see 
also [ 1, 81) 

N ( r ,  t )  = N , ( t ) t - ’ / d H f i ( r t ~ ’ i d H ) .  (8) 
By definition, both scaling functions N ( x )  and f i ( x )  are normalised. To confirm the 
scaling we have investigated N ( r ,  t )  for several values of a,, on the critical line. In  
figure 5 we have scaled N ( r ,  t )  according to equation (8) for aefi = 1.318 and U,, = 4. 

r + - l l d ~  

Figure 5. Plot of N ( r ,  f ) f l ’ d ~ / N s ( t )  as a function of rf-’ldH at criticality for several values 
o f f  ( f  =400 (O) ,  800 ( A ) ,  1600 (D), 3200 (0 ) )  and for two values of aef.  ( a )  aeR= 1.318, 
which corresponds to the perimeter walk of Ziff er a /  [16]; ( b )  a,,=4. To obtain these 
results for each value of aeR averages over 400 000 walks have been performed. 
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r l i l t l  

Figure6. Plot of i ( t ) N ( r ,  t ) / N , ( t )  as a function of r / i ( t ) ,  ( i ( t ) = ( ( r 2 ( t ) } ) ” ’ )  at criticality 
for several values of aeff. The different symbols correspond to different values of aeR 
(aeff = 1 (0), 1.318 (A) ,  4 (U)). For each value of aeff averages over typically 400 000 walks 
have been made. The data collapse supports the ‘superscaling’ assumption, equation ( 7 ) .  

The data collapse confirms the scaling expression. In figure 6 we have checked the 
‘superscaling’ equation (7) for three values of aeB. Again we obtain a data collapse 
which also shows that the ‘superscaling’ is valid. 

4. The biased perimeter walk 

After having discussed scaling properties of the dressed self-avoiding walk on the 
square lattice, we will now consider the influence of an external bias field on the time 
evolution of the growth process. 

The bias field is introduced as follows. We assume that the bias field points in the 
y direction and is described by a parameter 6 2 0. The probability P+y(P-y) the walker 
steps in forward (backward) direction of the field is enhanced (decreased), while steps 
in the perpendicular directions P+, and P-, are not affected. Our choice for the bias 
is motivated by thermally activated diffusion in the presence of an external field E. 
For jumps in direction of the field, the potential barrier A is decreased, A + A - E while 
for jumps in the opposite direction, A + A + E. Consequently we assume 

P+,(E) = P+y(O)(l+ 6)  ( 9 a )  

P-,,( E )  = P-,(O)/(  1 + S) ( 9 b )  

P* , (E)  = P*X(O)  ( 9 c )  

1 + S exp( E /  kB T) E 3 0 .  ( 9 d )  

where 

A general biased DSAW (on a square lattice) is characterised by four quantities: p I ,  
p 2 ,  p 3  and 6. At each time step, the probabilities p , ,  p z ,  p 3  are modified by the bias 
field according to ( 9 a ) - ( 9 c )  and the growth walk proceeds as described in P2. We 
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will study only one point in the critical line: p, = pf, p 2  =pc( l  -pJ, p3 = 1 - p c .  By this 
walk (without bias) the external perimeters of ordinary percolation clusters at p c  are 
generated. We have studied the end-to-end distance for several values of 6 by Monte 
Carlo simulation. The results are shown in figure 7.  For small bias fields 6 1 a well 
pronounced crossover time t ,  occurs. For small times, 1 << t << t , ,  ( r2 (  t ) )  - t 2 ' d H  as in 
the unbiased case, while for large times t >> t ,  we find the conventional result for biased 
diffusion in uniform media, ( r 2 ( f ) ) -  t 2 .  In contrast to biased diffusion on random 
networks, our medium has no fixed dead ends into which the walker can be trapped 
by the bias. Thus our simulations do not show unusual long time relaxation effects 
and give r - t .  The crossover time t ,  decreases with increasing 6. In order to establish 

I*.. 

A .***.5. .... .** . A . A A. 

I .  I I I 1 
IO' 103 106 

t 

Figure 7. Plot of ( r 2 ( f ) ) / f 2  as a function of t for biased walks with p ,  =p,' ,  p 2  =p,(l - p c ) ,  
p ,  = 1 - p c  and several values of bias field strength S (6  = 1 (0), 0.7 (U), 0.5 (V),  0.4 (A),  
0.3 (e), 0.2 (A), 0.1 (m)). For each value of 6 we have averaged over typically200 000 walks. 

I 
10 o v  

I I 

I .  I 

Figure 8. Plot of (r2(f))/S"(fS2)-* as a function of r S z  for biased walks with several values 
of S (6  =0.05 (V), 0.1 (O), 0.15 (m), 0.2 (A), 0.25 (e), 0.3 (U), 0.35 (A) ,  0.4 (VI). We 
have chosen z = 2.8 and for each value of S we have averaged over typically 200 000 walks. 
The data collapse supports the scaling assumption, equation (10). and the choice of 
z = 2.8 f 0.2. 
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a scaling theory we make the ansatz 

( r2( t ) )  = 6"B( t 6 ' )  

with the new exponents u and z. For small times the walk is not affected by the small 
bias field and thus ( r2( t ) )  - r 2 1 d H  is independent of 6. Thus we require 

B ( x )  - X 2 ' d H  x<< 1 (11) 

and 

u + 2z/dH = 0 

which relates u and z to each other. To confirm the scaling ansatz and to determine 
the exponents U and z we have plotted ( r 2 ( t ) ) / 6 " ( t 6 ' ) - '  as a function of t6' for several 
values of z. The best fit was obtained for z = 2.8i0.2,  which yields U = -3.2i0.2 
(figure 8). 

5. Conclusions 

In this work we have examined a general class of self-avoiding walks where the 
self-avoiding constraint is introduced by 'dressing' the walks with two kinds of particles. 
A walker travels on a square lattice and chooses at each step one of the three forward 
directions with probability p , ,  p 2  and p 3  if the directions are allowed. The self-avoiding 
constraint is obtained by 'dressing' the walk with 'black' and 'white' particles after 
each step such that the walk generates the external perimeter of arbitrary clusters 
consisting of black or white particles. 

We have discussed the critical line in the space of the parameters p ,  , p 2 ,  p 3  where 
infinite walks occur, and studied the end-to-end distance r in the growth process as 
well as the corresponding distribution function N (  r, t ) .  

We have also studied the growth walk in the presence of an external field 6 with 
a fixed direction in space. In this case, the growth process as a function of time is 
characterised by a crossover time t ,  - 6-' which separates a fractal region with fractal 
dimensionality dH = ( t<c  t,) from a one-dimensional region for t >> t,; we found for 
the crossover exponent z = 2.8 f 0.2. 

The general dressed self-avoiding walk can be considered as a growth model for 
polymers or for membranes in two-dimensional problems. The degrees of freedom in 
the growth process correspond to the probability that a new monomer is added in the 
different possible directions (three directions in the case of the square lattice). Further- 
more, due to the various possibilities of dressing, the dressed self-avoiding walks 
contain additional degrees of freedom in their generation. The different types of 
dressing can be related to steric contraints in polymer growth or to hydrophilic and 
hydrophobic ends in membranes (black and white particles). Such characteristics seem 
to give very interesting features to dressed self-avoiding walks. 

Acknowledgments 

We gratefully acknowledge financial support from Centre National de la Recherche 
Scientifique and from Deutsche Forschungsgemeinschaft, in particular Sonderfor- 
schungsbereich 306. 



On growth walks with self-avoiding constraints 1805 

Appendix 1. General structure of a ‘dressed’ self-avoiding walk 

In this appendix we show that the concept of the DSAW is very general and can be 
applied to any two-dimensional structure. Consider an arbitrary two-dimensional 
lattice consisting of polygons (full lines in figure 9). The corresponding dual lattice 
is obtained by choosing one point inside each polygon and connecting the points in 
adjacent polygons (figure 9). The walk is performed on the dual lattice and the 
self-avoiding constraint will be obtained by dressing the walk with black and white 
particles on the sites of the original lattice. In figure 9, the walker’s steps are presented 
by arrows on the bonds of the dual lattice and the growth process follows the description 
given in 8 2. The self-avoiding constraints impose that the walker can never have 
particles of different colours (black and white) on the same side. He cannot walk 
again on his own path. A ring is formed when no other possibilities occur. 

Figure 9. Graph of a general ‘dressed’ self-avoiding walk performed on an irregular 
two-dimensional lattice. The full lines represent the original lattice while the broken lines 
refer to the dual lattice. The steps of the walk are marked by arrows. 

Appendix 2 

(a)  General features of the critical line. In 0 3 we have shown that at criticality the 
number of right- and left-turning closed loops is the same. This is only possible if, on 
average, the walker turns to the right as often as to the left. Therefore, in the case of 
symmetric generators like ( L ‘ A R ’ )  or ( L ” A R ” )  the critical line is simply the line 
p I / p 3  = 1. This is different from the case of § 3 where we have chosen the asymmetric 
generator S ,  = ( L ” A R ’ ) ,  which places two black particles on the lattice when turning 
to the left but only one white particle when turning to the right. Due to this asymmetry 
the ratio p J p 3  at criticality is lower than one, which can be understood by the following 
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qualitative argument. For p I / p 3  = 1 the probability of turning to the right or to the left 
is equal in those cases where both directions are allowed. But due to the larger amount 
of black particles, the situation where the step to the right is forbidden occurs more 
often than the situation where the step to the left is forbidden. Therefore in total the 
walker turns to the left more often than to the right. To compensate this effect the 
ratio p J p 3  must be decreased to reach criticality. 

As the difference in the amount of black and white particles depends on the number 
of steps to the right and to the left, this difference decreases with increasing value of 
p 2  and tends to zero for p 2  going to one, where the walker always steps straight ahead. 
Consequently, the ratio p J p 3  at criticality increases monotonically with increasing 
value of p 2  and tends to unity for p 2  going to one. This behaviour is obtained from 
our simulation results shown in figure 3. 

(b)  Critical behaviour at pz  = 0. This is a particular feature of the walk generated by 
SI = (L”AR’) .  When p2 = 0, the walker turns at each step to the right or to the left. As 
can be seen from figure 10, this walk can be mapped on another walk which is performed 
on a 42 x d2 sublattice and can be considered as a simple perimeter walk of percolation 
clusters of white particles. In figure 10, the full arrows belong to the original walk 
( p ,  , 0, p 3 )  and the broken arrows to the corresponding walk on the J2 x d2 sublattice. 
In the sublattice walk the black particles on the extremity of the broken arrows are 
irrelevant. A white particle is placed on the sublattice when the original walk turns 
to the right and therefore occurs with probability p3 while a (relevant) black particle 
is placed on the sublattice when the original walk turns to the left. Consequently this 
occurs with probability p l .  The generators of the sublattice walk, shown in figure 
1 0 ( b ) ,  together with the way of occupying the sites of the sublattice, determine the 
sublattice walk to be the perimeter walk of Ziff et a1 [ 161, which generates the perimeter 
of percolation clusters of white particles. Therefore to reach criticality we have to put 
white particles on the lattice with probability pc which yields p 3  = pc and p 1  = 1 - p c ,  
Consequently the ratio at criticality is given by 

which is in excellent agreement with our results from Monte Carlo simulation, shown 
in figure 3. 

16) -m a a4 
& & & 

Figure 10. ( a )  Graph of a ‘dressed’ self-avoiding walk with p 2  = 0. The walk is marked 
by the full arrows. The broken arrows refer to the corresponding walk on the d2xd2  
sublattice. The generators of the sublattice walk are shown in figure 10(b). 
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